STP in the Back Office: An implementer's view

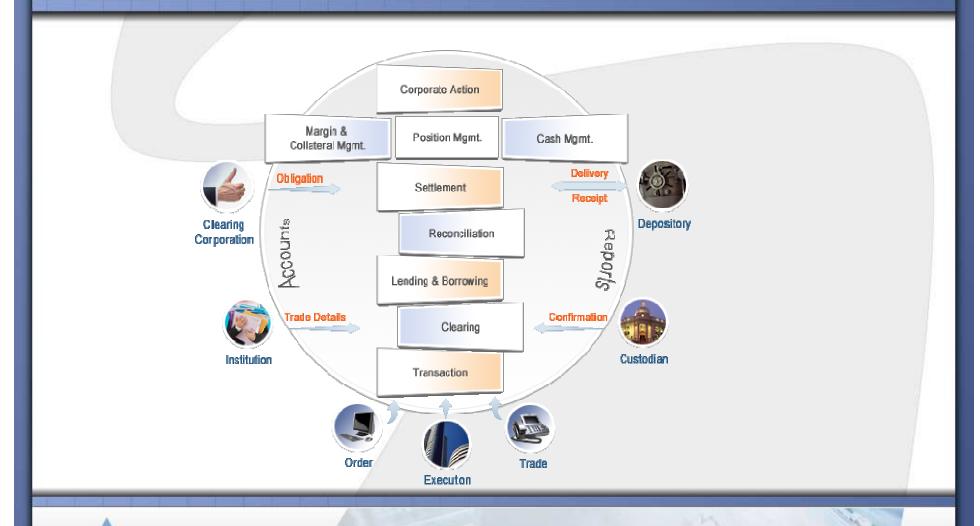
Arnab Debnath CEO, Anshinsoft Corp.

Presentation Outline

- Perspectives on STP
- STP Solution: Implementation considerations
 - Architectural & Technology Considerations
 - The debate: "BUILD" vs. "BUY"
 - Total Cost of Ownership
- Case Study

Perspectives on STP

- Intra-Firm STP: reasonably similar across different capital markets
- Inter-Firm STP: different from market to market; governed by the law of the land and the evolving market practices


Many views on STP implementation NEXT

- STP is . . .
 - Reducing settlement cycles
 - Elimination of manual intervention
 - Reduction of operational cost & risk
 - The backbone of efficient market mechanism
- STP . . . implementer's view
 - The real time system automating the entire post-trade life-cycle management, that provides the right balance between process efficiency, minimizing operational cost and limiting risk exposure

Implementer's view of STP

INNOVATION NEXT

ANSHINSOFT

Industry outlook on STP

INNOVATION NEXT

- T+1 not top priority for securities industry
 - New research challenges rationale behind reduction of Cost and Risk expected from T+1 implementation

Tower Group report, "T+1: Cost, Risk, Benefit and Other Urban Legends"

- Reference Data management viewed as the major obstacle in achieving STP
 - Four out of five financial institutions view badly managed reference data as a major cause of failure in achieving intra-firm STP

Report published by Tower Group, Reuters and Capco

Industry outlook on STP

INNOVATION NEXT

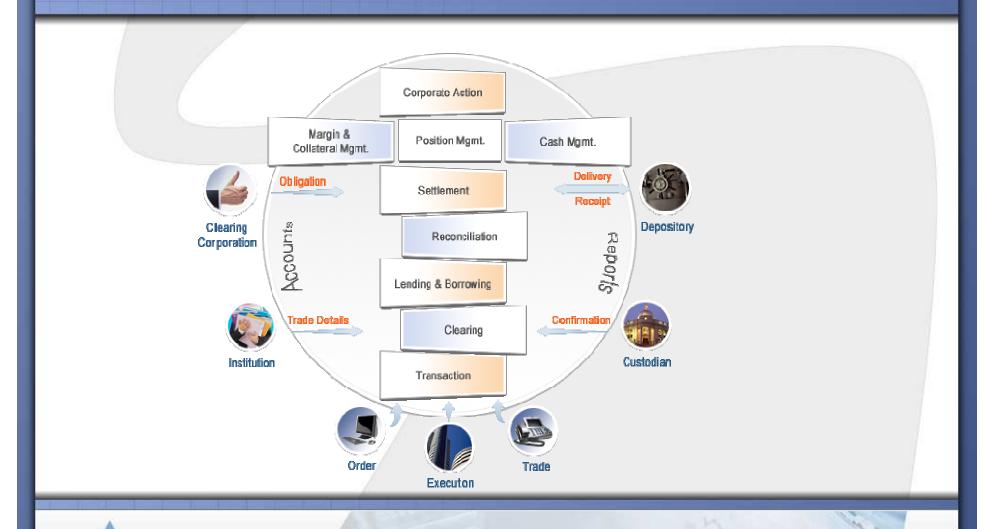
- What role should regulators play in promoting STP?
 - STP realistically can not be imposed on the marketplace from the top down, it should be allowed to create an organic STP structure.

Daniel Doscas, HSBC Securities

- Has the STP direction changed over the past 5+ yrs?
 - In 2000-2001, the securities industry faced about \$1.8 trillion worth of trades remaining unsettled globally in single business day.

Industry outlook on STP

INNOVATION NEXT


Current mindset ...

STP initiatives – How to be more Cost & Time-effective Complete back office system overhaul is difficult/risky Third party outsourcing not viable option for everyone Off-shoring only makes sense for the 'big-boys'

What is the way to go?

Modular STP Solution Framework

ANSHINSOFT

www.anshinsoft.com

Presentation Outline

- Perspectives on STP
- STP Solution: Implementation considerations
 - Architectural & Technology Considerations
 - The debate: "BUILD" vs. "BUY"
 - Total Cost of Ownership
- Case Study

Architectural Considerations

- Architecture backbone
- Scalability
- Distribution
- Virtualization
- Customizability
- Preparing for tomorrow

Architecture: Backbone

INNOVATION NEXT

- Tier based?
- Grid based?
 - Messaging grid (distributed messaging)
 - Processing grid (parallel processing)
 - Data grid (distributed caching)
- Service Oriented?

Everything towards the common goal ...

Architecture: Goal

INNOVATION NEXT

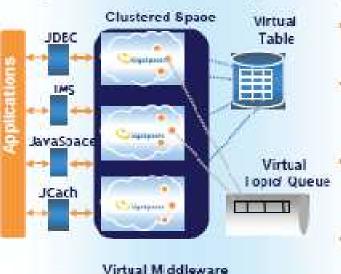
Offer a powerful computing framework, capable of handling capacity transaction throughput, enabling clustering, high availability, location transparency and consistency of secured services across all the layers of the architectural stack.

Architecture : Scalability

- Scalability is a measure of how cost-effectively you can grow your operating capacity
- Plan ahead for a scalable system based on off-peak and peak trade volume (and future growth plan)
- Linear scalability scaling OUT through additional resources (hardware, application instances)

Architecture: Distribution

- Data distribution
 - Data grids (distributed cache, network attached memory)
- Processing distribution
 - Cooperative parallel processing (map/reduce paradigm)
- Messaging distribution
 - Message bus
 - **Goal:** Loosely coupled distributed services for implementing high performance and low latency STP system



Architecture: Virtualization

INNOVATION NEXT

'Write-Once' business logic and scale anywhere

Single virtualization technology for eaching and messaging

- Same data can be viewed through different interfaces
- A single runtime for maintaining scalability, redundancy across all systems
- Reduces both the maintenance overhead and development complexity
- Provides Grid capabilities to EXISTING applications

Virtualizing the Middleware using Space based technology (figure copyright : Gigaspaces)

Architecture: Customizability

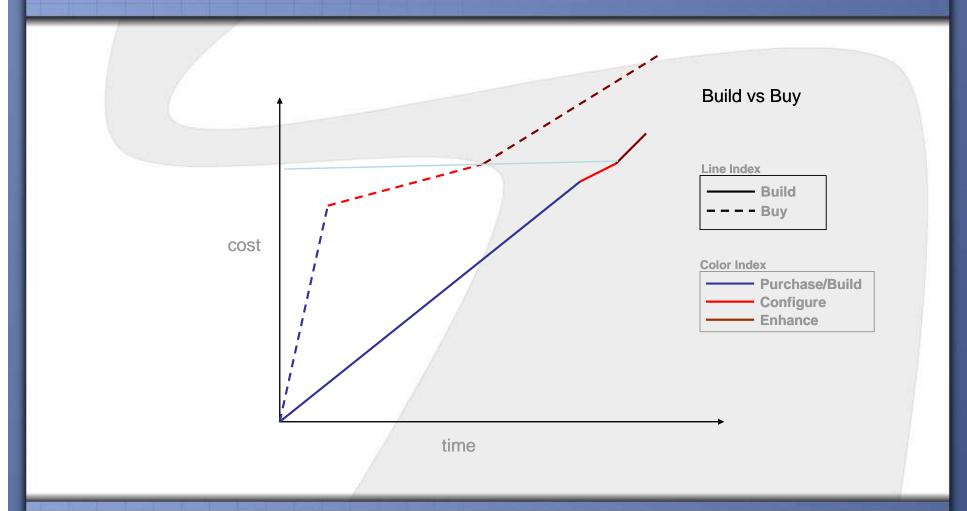
- Rule based processing
 - Market characteristics vary
 - Localization for different regions
 - Using rule engines for dynamic inference and externalizing the customization activities

Architecture for tomorrow – Multi-core

- Multi-core is here STP applications need to take advantage multi-core platforms
- Functional languages will lead the way
 - More and more being used in the Wall Street
 - Erlang OTP platforms have proved to be multi-core ready
- Stateless scalability

The Debate: Build vs. Buy

- **Buy or build**: Requires active support / involvement of the management and the business/user community
- Build: Whether built in-house or by external vendor, active collaboration required from internal operations
- **Buy**: Even if functions/features match, operational and technical integration may not be obvious or trivial
- Off-the-shelf package solutions may require significant customization, raising the total cost of ownership



Factors Influencing Build or Buy

- Time to deploy (including integration/migration)
- Budget allocation (incremental vs. upfront)
- Firms internal resource profile and IT capabilities
- Handling future changes and enhancements
- Feature differences between a custom built solution and packaged solution and their criticality to the firm
- Total Cost of Ownership (not just the licensing cost)

Build vs Buy – cost & time estimation

www.anshinsoft.com

Build vs. Buy: Our Views

- Having the right balance between what you BUY and what needs to be BUILT on it
- No single solution truly fits all so critically evaluate the application capabilities against your requirements
- BUY Customizable Solution Framework as it may be difficult to address all custom requirements in a fully packaged solution

Total Cost of Ownership (TCO)

INNOVATION NEXT

Pay careful attention to the real cost

- TCO is combination of procurement cost plus ongoing cost of support, operations and maintenance
- Ongoing cost factors depend on the flexibility/effort for:
 - Customization, Integration, Migration
 - System Testing & UAT, User Training
 - Supporting future business requirements & enhancements
 - Ongoing system maintenance hardware and software
 - Managing operational scalability

Presentation Outline

- Perspectives on STP
- STP Solution: Implementation considerations
 - Architectural & Technology Considerations
 - The debate: "BUILD" vs. "BUY"
 - Total Cost of Ownership
- Case Study

Case Study

INNOVATION NEXT

Broker-cum-Custodian Back Office STP system for Global Financial Services Company

The Background

INNOVATION NEXT

- Customer
 Securities broker-cum-custodian with operations in multiple capital markets (countries)
- Goal

Implement and migrate to a new system that would eliminate their operational inefficiencies and enable them to meet future business demands -

Handle higher volume, Ready for 1-day settlement and have common solution backbone across global operations

Their Operational Issues

- Too many scattered legacy systems
- Scattered reference data for each legacy system
- User operation and training multiple system knowledge required
- Lack of standards in information exchange protocol
- Old systems unable to handle increasing volumes
- Manual process for data verification/reconciliation

High-level Objectives

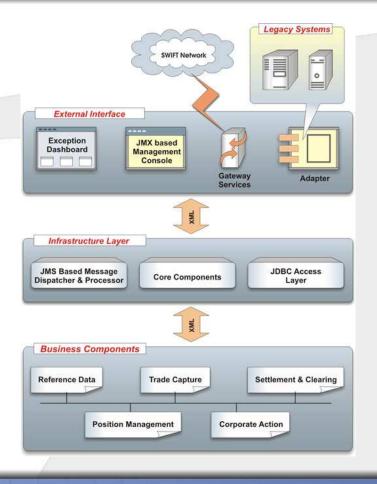
- Phase out scattered legacy systems with a single new system built on latest technology platform
- Unified system for handling multiple asset classes
- Same solution platform across multiple offices
- Seamless integration with the required legacy systems
- Centralize Reference Data repository
- Enable intra-firm STP and be ready for inter-firm (T+1)
- Be scalable for handling increasing trade volume
- Designed flexibly, for easier incorporation of changes in market regulations and firm's business practices in future

Implementation of a clearing & settlement engine with real time interface between market intermediaries and straight-through transaction processing capabilities

- Comprehensive post-execution trade life-cycle management
- Works in real time and batch mode
- Supports multiple asset classes
- Supports cross border trades
- Integrated reporting solution
- Real time posting and general ledger journalization
- Integrated with FO and MO in real time
- Integrated with market intermediaries (where supported)

High Level Approach

- Custom solution was first implemented in their Asian operations in the following order: Japan, Hong Kong and Singapore.
- Followed by implementation for their US operation (NY): the system has successfully completed UAT.



The Solution – Functional Components

- Trade capture and management
- Settlement processing
- Corporate action
- Position management (customer, inventory, nostro and stock record)
- General ledger
- Reporting (regulatory, transaction, risk assessment, audit and client reports)
- Exception monitor

Solution Architecture

Architectural Decisions

- Architected based on async. messaging and MOM
 - Reliable delivery
 - Standards compliant (JMS)
- Web based
 - Centralized deployment and maintenance
 - Standards compliant (Java EE)
 - Container based (Java EE) management
- Centralized exception handling and reporting

Architectural decisions

- Scalable
 - Stateless service layer
 - Clustered
- Fault Tolerant
 - Oracle RAC
 - Fail-safety of MoM

- Less number of disparate systems to use/manage/monitor
- Faster processing to handle increasing trade volume
- Real time information availability and decision making
- Less manual intervention
- Daily generation of all regulatory and client reports
- Faster exception handling, lowering operational cost & risk
- Quick detection of operational system errors due to an integrated application
- Automatic reconciliation and discrepancy identification

- Varying levels of complexity for similar processes in different markets [complexity increases with market age]
- Unifying different market practices in a single platform
- Eliminating the local legacy systems in each operations
- User acceptability and inherent resistance to migrate to new system
- Balancing between cost, time and resources (with hard to scale knowledge constraints)

Lessons Learnt

- Have a proper reference data strategy. If not defined, insist on getting it defined before starting implementation.
- Everything cannot be made configurable performance and configurability needs to be balanced.
 - Drastic differences in market practices may require some rebuild.
- Plan for performance early evaluate/estimate current and expected /future performance metrics
- Set scalability expectations early how much can be scaled and at what cost
- Involve users from initial stages to get to know usability requirements (and get buy-in for new system)
- Have a well-defined migration & implementation path
 - Estimate efforts for parallel run

INNOVATION NEXT

Thank You

arnab@anshinsoft.com

ANSHINSOFT

www.anshinsoft.com